Chapter 4

Finite Difference Method for
Parabolic Equations
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Numerical Stability-In Practice

1. Recall the discretized equation of heat conduction using Dufort-Frankel:

{—';M L/ L [y =yl ]
20 A T

+ This scheme is unconditionally stable.

2. Explicit Method is stable if:

F= [iﬁ] < l It limits time step size!
(Ax)* 2

3. Central Difference in time:

e
T—ﬁ(l o — 2u) )

+ This scheme is Unconditionally Unstable.
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Numerical Stability

A concept only defined in iterative problems.

It necessitates:
Errors, of any type, should not grow in an iterative process.

+ Somewhat more difficult than the study of consistency!

For non-linear problems, the necessary condition for stability is that linear stability
analysis of them must be stable.

We will discuss it in detailed later on!

Now, let's only take a brief look at “stability of Dufort- Frankel and Explicit scheme”
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Numerical Stability-Physical Interpretation

Sometimes numerical instability can be seen as physically unacceptable results!

Let's consider explicit scheme for discretization of heat equation:

W=l )+ (= 20!
At
F=
(Ax)?

Assume that at t = n we have: uf = 0 and ufy; = ul', = 100°C

In this case, if r >§ temperature at point i 00
will exceed the temperature of two nearby points! ¢+ a+l
UNACCEPTABLE!? e s 100°C
' n
The maximum expected temperature must be 100°C i-1 i i+l
However, when r = 1 it becomes T/*** = 200°C ! r=1



Vi ® 4.
Convergence

Generally speaking:
A Consistent and Stable Scheme will converge!

Convergence:

Solving discretized equation of a PDE subjected to similar boundary and initial
conditions will converge to the exact solution of that PDE provided that grid size
is chosen to be infinitely small.

Finite Difference Equation is converging if:
lim | U —ul |=0 (x.1,) €Q
Bk

where uf = ulxg, 1)

Lax’s Equivalence Theorem:

For a linear well-posed problem, with correct boundary condition, and a Finite
Difference Approximation of it, Consistency and Stability are necessary and
sufficient conditions to provide the convergence!
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Tridiagonal Systems of Equations

One algorithm that deserves special attention is the algorithm for tridiagonal
matrices, often referred to as the Thomas (1949) algorithm.

ay, az 6 0 0 .- 0 0 0
ay ap apm 0 0 . 0 0 0
0 ay @y ay 0 - 0 0 0
T=| 0 0 a3 ay s 0 0 0
0 0 0 0 0 o Gy g2 Guoiwol Guops
00 0o 0 0 - 0 Gyt G
Row 2: Ry —(agy/ap)Ry [0 ap—(ay/aylay ay 0 0 oo 0 0 0]

only ag, in column 2 must be eliminated from row 3

only a3 in column 3 must be eliminated from row 4, etc.

The eliminated element itself does not need to be calculated.

storing the elimination multipliers, em = (a5 /a,,) etc, in place of the eliminated
7
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Tridiagonal Systems of Equations

Using numerical methods, the governing PDEs convert to system of algebraic
equations as follow:

Tx=b

Large tridiagonal systems arise naturally in a number of problems, especially in
the numerical solution of differential equations by implicit methods.

ay a; 0 0 0 0 0 0
an ap ap 0 0 0 0 0
0 ay ay ay 0 .- 0 0 0
T=| 0 0 ap ay ds 0 0 0
0o 0 0 0 0 v Gz Guotu-l Gnois
0 o o 0 0 - 0 [ Ay

When a large system of linear algebraic equations has a special pattern, it is
usually worthwhile to develop special methods for that unique pattern.
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Tridiagonal Systems of Equations

ay ap 0 0 0 0 0 0
a ap ayx 00 0 0 0
0 ay ay; ay O 0 0 0
T={ 0 0 ay 0 0 0
0 0 [} o - @yt Gy
o 0 0 0 0 - Gunet g

Hint:
Only the diagonal element in each row is affected by the elimination.
Elimination in rows 2 to n is accomplished as follows:

G = g = @ [ i) (i=2,....n)

Thus, the elimination step involves only 2n multiplicative operations to place T
in upper triangular form.



Tridiagonal Systems of Equations

Subsequent elements of the b vector are changed in a similar manner.
by = by — (ay fay )by

em = (a31/4)1) is already calculated. Thus, the total process of elimination,

including the operation on the b vector, requires only 3n multiplicative operations.

Hint:
The nxn tridiagonal matrix T can be stored as an nx3 matrix A' since
there is no need to store the zeros.

’ ’
— a2 “}.3
.
a1 dy a3

n ’ h
A=]| T 432 933 Column2=Diagonal elements of T
) ', """""""""""" Column3=Super-diagonal elements of T
anrl.l aﬂ]—l,! Ayo13
gy a2 -

Column1=Sub-diagonal elements of T

— —2,250000 1.0 00
(~0.444444) —1.805556 1.0 00
(~0.553846) —1.696154 1.0 00

A= | (~0.589560) —1.660431 1.0 and b= 00
(—0.602253) —1.647747 10 00
(—0.606889) —1.643111 1.0 0.0
(-0.608602) —1.641398 — —100.0

Xy = by fdh 5 = (—100)/(~1.641398) = 60.923667
x5 = (bg — as 3%:)/ag 5 = [0 — (1.0)(60.923667))/(~1.643111)
= 37.078251

1.966751

4.425190

7.989926

x = | 13552144

22.502398

37.078251

60.923667
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Example
1" — T = —a?T, T(0.0) = 0.0 T(1.0) = 100.0
T‘-:-I =20+ T"l 2 2
L R 0(A) — T, = =o',
Ax? ) 2=40
T ~Q+0 AT 4+ T, =~ AF T, JAx=0.25

2+a A¥)y=225

— =225 10 0.0

1.0 =225 10 0.0
1.0 =225 1.0 0.0
A=[10 -225 1.0 and b= 0.0
1.0 =225 10 0.0
1.0 =225 1.0 0.0
1.0 -225 — —100.0

Implicit Finite Difference Approximations

%%E%%
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Backward Difference Scheme

R e T LT PR N__4p
ol T B (AL A
Ar Ax?
"
b -
Considering r = Lz we have:
" am1 known
W - = ) =2 )
[

or, Grid Stencil

BTCS: )+ (14 20u -l = o

How to solve it?!




Implicit Finite Difference Approximations

BTCS:  —ru| + (1+20u" — n) = uf

Assume that boundary values are

n (1+2r) -r upt!
zero at both ends. o420 -1 !
« This tri-diagonal system can be

solved by Thomas Algorithm.

Note that:

E—— —r +2r -
« BTCS is unconditionally stable. AR | LN

+ Second order in space but first order in time!

)

o
Implicit Finite Difference Approximations
+ Keller-Box Scheme . * Lk
a K
e &u . 0 “Contering”
dr o ax
We can re-write this equation as: .
e
wm_p
dx P 5o P
du = ok Grid Stencil
g dx
15
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Implicit Finite Difference Approximations

+ Crank-Nikolson Scheme

ﬁﬁ,u:”é = mw%“:-n + 65 » . l:“ .
u - w ) M ) ) . kn(lwn
At 2(AxP a-l
= 2t a2 ) AR
Considering r = 7 we have: Grid Stencil
=l = R 20 )+ 5 =200 )
or,
"“!f':\' =2(1 + r)u’;”' + ru:f,’ =—rul_ +2(=1 + ru - rul,, Crank-Nikolson

Implicit Finite Difference Approximations

+ Keller-Box Scheme

du i

s

0 “Contering”

We can re-write this equation as:

il

anar
ar ax

Grid Stencil

h
Wi - S PL) =0
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Implicit Finite Difference Approximations
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Implicit Finite Difference Approximations

* Keller-Box Scheme

du  Bu " m

o A

O "Centering

{u:'—u:‘,. - R =0

Pl =Pl = ) = R:J_]'

We can re-write this equation as:

- 10 00 0y ]
gﬁ -’ -1 =] -t Py 0
J 2 2
R
Grid Stencil |- 1 00 uy i
i iy Py 0
0 0 f|-1-2f[1-%
W, W v w1lFlie
- ~ Py 0
or, : ,
Popn e o et et B e :
(e f—\’{(”a dul )= P =P = — (] +uT))
n "
. R )
)

Implicit Finite Difference Approximations
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+ We can re-write the previous matrix as below where the elements are blocks itself.

Implicit Finite Difference Approximations

The main features of Keller Box Scheme

+ This matrix can be solved using block Thomas algorithm. 1. Only slightly more arithmetic to solve than the Crank-Nikolson method
2. Second order accurate with arbitrary (uniform) x and y spacing
+ Please note that this matrix should be constructed so that: det(By) # 0 3. Allows very rapid x variation
4. Allows easy programming of the solution of large numbers of coupled equation.
By, Cy iy RJU
A B € i R
. « Steps:
A B G i Ry
1. Reduce the Equations to a 1% — order system
— 2. Write difference equations using central differencing.
3. Linearize the resulting algebraic equation and write them in matrix-vector form
4. Solve the linear system by the block-tridiagonal elimination method
A, B, i, R

20



Implementation of Boundary Condition

Implicit schemes mostly end up to this form:

o
i+

A+ B+ Cudll) = R = Rl ol il

) = Ha, Himax = Wp

1st Method:
Boundary conditions are considered in the equations and matrix-form equation is
solved fori = 2to i = imax — 1.

Al + Bay™ + Co} = RS i=2

B+ Cadd'! = R - Al Considering BC at a
el
imax-1

R

fmax-1 "

ntl el . .
Ajpar—1 Wiy > + Bimax-11d Cimar-14pay = Riygyoy i = imax

ntl a1 el
Abmar-18, 3 + Bimax- 1854, imax-1 8, Considering BC at imax

21
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Implementation of Boundary Condition

2" Method:
Let the computer do the calculations!

i+l 4l

B, C " p
A B, €, | | R
Art By Cry || ! R,
ST Pl O
B =8=1 Cy=A; =0

Note: a slight increase in computation cost, however, gives more flexibility in
computer code!

23
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Implementation of Boundary Condition

+ 1st Method:
Boundary conditions are considered in the equations and matrix-form equation is

solved fori = 2 to i = imax — 1.

B!+ Coll! = RS — Ao

+1 ] 1
A1 Wiz + Bina1lya = Ry = Cinanortt”
B. C: ! Ry — Ay
A B G ! R
Az Biox Croy | ) Ry,
Ay By ||| R - coug
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Derivative Boundary Condition

1st Method:
Backward difference at the boundary

Buy —4uy_g tuy—p _
24x B

0

u(x,0) = f(x)

25 Method:
False boundary

24
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Numerical Solution of Blasius Equation Numerical Solution of Blasius Equation

« Blasius Equation: «  We discretize the equations in n_1
2

fi—fi- 1
) + %f“f)f"(']) =0 gy a an arbitrary parameter = L= = Sl + i)
avx ;
fO) = FO)=0,  fe)=1 % =vp= éu-, )
!

= *%(f"); = *ﬂ‘M

Breaking it up to three first order equations:

d—f =u fl0y=0 = « Newton Linearization

dn - These equations are non-linear, so, we have to linearize them.
di

?Zz., w0 =0 u(eo)=1 = pesn

dv @ Wt =+ dul

—=—fy

dn 2

el
vy

”
b Ay

where n denotes the iteration number.
Note: we call the solution converged if §(.) variables approach to zero!
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Numerical Solution of Blasius Equation

Numerical Solution of Blasius Equation

+ Substituting these parameters into the first equations yields: + Finally, it can be written in matrix form as:

s LS PRI " ; o
I 6F = A = 6y = (b iy b | AW+ B+ Ol = R =t aw wT
h
] 6] = 8 =5 v v )
oh o ) ]
Vi oV =, =0y == S e + 8+ B ¢ 8, R,
s AL By CY & 4
U+ BF7 0%, + v ) R : :
We can rewrite it as: A B o i I
" PRIy dnav=1 " jmar-1 "% jurax-1 jniax-1 Jjinax=1
Sff = 8fL, = =+ o) = 3= i T J A A u " n n
7-o8 - o6~ . t m || d || B
f=uy =+,
= B, = SO+ =] P

oh aly
(14 =P8+ (14 200+

\ @

ah y Ry
-V 1=V = =

i
visfr + = s = o)

Note: This block-tridiagonal matrix can be solved using block Thomas elimination
T s i
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Numerical Solution of Blasius Equation
« A,B,C and R blocks are as following:
O ,“T- o I -’L:' 0
m e o . ah; e mE ahy o
A= %“.‘- 0 -|+'Jif1‘. 2% j% jmax m=| 5 0 \-J—,I 25 jmax-1
00 0 0 4 -
0o o
c=|ve o V=g jmar—1 222 jmax-1
o
Bjar
)
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